Chatbot que pensa? Afinal, como é o "cérebro" da IA mais avançada do mundo
Em maio desse ano, a empresa OpenAI publicou um artigo descrevendo a performance de uma nova versão de sua plataforma de inteligência artificial direcionada a línguas naturais, a GPT-3. A notícia divulgada sobre a licença exclusiva adquirida pela Microsoft aumentou o interesse nessa ferramenta capaz de produzir textos automaticamente e gerou ansiedade em muitas pessoas cuja profissão pode estar sendo colocada em risco.
O GPT-3 é uma ferramenta que se encaixa dentro da área de processamento computacional de línguas ou processamento de linguagens naturais. Essa área, conhecida em inglês como Natural Language Processing, nasceu praticamente junto com a própria computação na década de 50.
Alan Turing, considerado por muitos o pai da computação moderna, propôs no artigo "Computing Machinery and Intelligence" uma forma de avaliar a inteligência de um computador através de um diálogo com uma pessoa, conhecido como Teste de Turing.
Se uma pessoa conversa através de uma interface com um computador, mas acredita estar conversando com uma pessoa, o computador teria transcendido e poderia ser considerada inteligente ou até mesmo consciente. E para poder conversar, a máquina tem que ser capaz de realizar tarefas básicas de manipulação verbal.
A primeira grande era do processamento computacional de línguas buscou resolver os problemas utilizando sistemas simbólicos. Um exemplo de problemas atacados pela geração inicial foi a tradução automática de textos em línguas diferentes.
Um exemplo foi a parceria entre a Universidade de Georgetown a IBM para desenvolver um tradutor inglês-russo em 1954. A máquina fora inicialmente programada com um dicionário e regras gramaticais e realizava as traduções automaticamente através da aplicação dessas regras. Apesar de algum sucesso inicial, essa forma de desenvolver tradutores "ensinando" as regras da língua não foi muito longe —provavelmente por causa do número grande de anomalias e informalidades contidas na língua.
Uma segunda geração de produtores de texto foi a geração de chatbots "malandros", como a Eliza de 1966. Ao invés de tentar ser um robô capaz de conversar sobre qualquer assunto, Eliza fora programada para operar em um contexto bem mais restrito. Quando o humano conversando com o robô fugia do domínio, a máquina tenta trazer a conversa de volta. Você pode experimentar conversar com a Eliza clicando aqui!
A geração mais recente são os sistemas que "aprendem" a língua através do aprendizado de máquina, ou machine learning —categoria na qual o GPT-3 se encaixa. Esses sistemas aplicam um modelo estatístico de inteligência. O modelo enxerga inteligência como uma capacidade de um sistema de absorver informações através de interações e de realizar extrapolações a partir das informações obtidas.
Todos que aprendemos tabuada através de memorização temos alguma experiência com esse processo. Você aprende, por exemplo, que 4 x 6 = 24 por decoreba. Depois você aprende que 6 x 4 = 24, também por decoreba. E você aprende, a partir desses dois resultados que a multiplicação é comutativa (por exemplo, a x b = b x a).
Um outro exemplo é a criança que depois de aprender que a conjugação na primeira pessoa do verbo "ver" é "vejo," fala "sejo" ao invés de falar "sou".
Os sistemas de machine learning computadorizados tentam imitar esse processo. Na prática, eles são formados por três componentes:
- Um módulo "cognitivo" (learner);
- Uma máquina paramétrica e;
- Um modelo capaz de criar inferências.
O sistema cognitivo está lá para filtrar as informações recebidas do ambiente e o modelo está lá para interagir com o ambiente.
A máquina paramétrica —geralmente uma rede neural— é quem "aprende" de fato.
Durante o aprendizado, o sistema recebe um conjunto de treino contendo uma lista de "estímulos cognitivos" e a resposta desejada. Por exemplo, a máquina pode receber uma série de perguntas (por exemplo, "como vai?") como estímulos verbais e uma série de respostas possíveis ("vou bem") e a máquina paramétrica ajusta a rede neural para reproduzir essa mensagem.
No caso do GPT-3, a rede neural tem 175 bilhões de parâmetros disponíveis para ajuste treinados a partir de um banco de dados com quase 1 trilhão de palavras. Esse número enorme viabiliza aplicações curiosas como um programa capaz de escrever poesias ou ensaios completos a partir de um título. Mas, ainda assim, GPT-3 ainda tem algumas dificuldades com o teste de Turing.
Diferença entre entender e instrumentalizar
No artigo do Alan Turing que eu comentei lá em cima, uma das perguntas postas era sobre a relação entre inteligência e consciência, especulando sobre a capacidade verbal sendo uma forma de medir esses conceitos. E uma das questões interessantes a se sondar aqui é se há diferença entre um conhecimento "real" e um conhecimento instrumental.
Os sistemas de aprendizado estatístico são opacos, no sentido de que não é possível saber traçar especificamente quais informações foram incorporadas numa resposta a uma pergunta.
Isso ocorre, em parte, porque as máquinas têm um volume enorme de parâmetros livres treinados por um número imenso de dados, fazendo qualquer tipo de traçado impossível.
Além disso, os modelos de inferência e os parâmetros não costumam ter um mapeamento semântico. Por exemplo, o tradutor inglês-russo da IBM-Georgetown tinha um dicionário e regras bem definidos e um usuário sabia quais as regras utilizadas, ao contrário do Google Tradutor.
Essa opacidade e essa falta de capacidade de explicitar o raciocínio conforta vários profissionais cujo valor principal está presente mais na capacidade analítica do que nos resultados específicos.
Mas às vezes eu me pergunto se isso não é apenas uma ilusão. Eu gosto de pensar que eu sou capaz de racionalizar todos os meus pensamentos, como, por exemplo, as regras de multiplicação. Mas a verdade é que eu aprendi a multiplicar decorando a tabuada.
ID: {{comments.info.id}}
URL: {{comments.info.url}}
Ocorreu um erro ao carregar os comentários.
Por favor, tente novamente mais tarde.
{{comments.total}} Comentário
{{comments.total}} Comentários
Seja o primeiro a comentar
Essa discussão está encerrada
Não é possivel enviar novos comentários.
Essa área é exclusiva para você, assinante, ler e comentar.
Só assinantes do UOL podem comentar
Ainda não é assinante? Assine já.
Se você já é assinante do UOL, faça seu login.
O autor da mensagem, e não o UOL, é o responsável pelo comentário. Reserve um tempo para ler as Regras de Uso para comentários.