Pesquisa revela mecanismo molecular que leva à insuficiência cardíaca
Um grupo de pesquisadores apoiado pela FAPESP desvendou um mecanismo molecular que contribui para a instalação de insuficiência cardíaca, condição caracterizada pela redução da capacidade do coração de bombear sangue.
O achado pode orientar o desenvolvimento de medicamentos mais eficientes para combater o problema, que afeta sobretudo pacientes com hipertensão arterial ou que tiveram infarto do miocárdio e outras doenças cardíacas.
O estudo, realizado no âmbito de Projeto Temático, foi publicado na EBioMedicine e coordenado por pesquisadores do Laboratório Nacional de Biociências do Centro Nacional de Pesquisa em Energia e Materiais (LNBio-CNPEM), sediado em Campinas.
"Nós vimos que uma variante do gene MEF2C, chamada MEF2Cγ, tem sua expressão aumentada e promove a ativação do ciclo celular em cardiomiócitos, células que formam o músculo cardíaco e que, na vida adulta, são incapazes de se dividir", diz Kleber Franchini, diretor do LNBio-CNPEM e coordenador do estudo.
A ativação do ciclo celular em cardiomiócitos adultos resulta em divisão incompleta e morte celular. "A consequência desse processo é a redução do número de cardiomiócitos no coração, o que predispõe ao desenvolvimento de insuficiência cardíaca", afirma Franchini.
Desde o início do século, sabe-se que há fatores de transcrição - moléculas que regulam a expressão de genes - que têm a atividade alterada em situações que antecedem a insuficiência cardíaca ou em que ela já esteja instalada.
O fator de transcrição MEF2C, produzido pelo gene de mesmo nome, é uma dessas moléculas, mas, até então, era conhecido por contribuir para o desenvolvimento do coração e também, de certa forma, protegê-lo contra a insuficiência, não o contrário.
O estudo do CNPEM mostra que o gene MEF2C pode dar origem a diversas proteínas variantes ou subprodutos. Ao analisá-los, os pesquisadores encontraram não apenas variantes que participam no desenvolvimento e protegem as células cardíacas, como também a variante MEF2Cγ+, que inibe a transcrição gênica e provoca alterações deletérias nos cardiomiócitos. "O desbalanço na expressão desses fatores em favor da variante MEF2Cγ + está na gênese de alterações que contribuem para a instalação da insuficiência cardíaca", explica o pesquisador.
Experimentos Para chegar aos resultados, os pesquisadores utilizaram diferentes modelos experimentais. Foram analisadas células do ventrículo de ratos in vitro, modelos de infarto do miocárdio em camundongos e camundongos geneticamente modificados.
Além disso, os pesquisadores analisaram pequenos pedaços de tecido obtidos de biópsias realizadas durante cirurgias do coração de pessoas com cardiomiopatia isquêmica crônica, uma das condições que levam à insuficiência cardíaca.
Observou-se que a proteína MEF2Cγ+ estava significativamente mais alta nas células dos corações afetados por insuficiência cardíaca, enquanto a proteína sem o domínio + (MEF2Cγ-, era mais baixa.
Técnicas de microscopia tornaram possível observar que a expressão da MEF2Cγ+ causou uma diminuição e um desarranjo das proteínas sarcoméricas, responsáveis pela contração dos cardiomiócitos.
Além disso, os pesquisadores notaram que o número, o formato e o conteúdo de DNA dos núcleos dos cardiomiócitos eram bem diferentes quando havia superexpressão da MEF2Cγ+. Nenhuma dessas alterações foi vista quando houve superexpressão de MEF2Cγ-.
"Percebemos que a presença da MEF2Cγ+ induz um processo conhecido como desdiferenciação nos cardiomiócitos, quando a célula volta ao seu estado mais primitivo, não especializado, uma etapa importante para seu retorno ao ciclo celular. O problema é que o processo de duplicação do cardiomiócito desdiferenciado não se completa e leva à morte celular. Queremos entender por que isso acontece", disse Franchini.
As análises mostraram ainda que a superexpressão de MEF2Cγ+ causa a desregulação de outros genes que interagem com ele, incluindo alguns que atuam como reguladores do ciclo celular, de proteínas do citoesqueleto (estrutura composta de diversos filamentos no interior das células cardíacas), da contração dos cardiomiócitos e do próprio metabolismo dessas células.
Por isso, os pesquisadores buscam agora entender melhor esses mecanismos para, futuramente, testar intervenções com moléculas que interrompam esse processo e possam evitar a progressão da insuficiência cardíaca.
ID: {{comments.info.id}}
URL: {{comments.info.url}}
Ocorreu um erro ao carregar os comentários.
Por favor, tente novamente mais tarde.
{{comments.total}} Comentário
{{comments.total}} Comentários
Seja o primeiro a comentar
Essa discussão está encerrada
Não é possivel enviar novos comentários.
Essa área é exclusiva para você, assinante, ler e comentar.
Só assinantes do UOL podem comentar
Ainda não é assinante? Assine já.
Se você já é assinante do UOL, faça seu login.
O autor da mensagem, e não o UOL, é o responsável pelo comentário. Reserve um tempo para ler as Regras de Uso para comentários.